Convergence of mimetic finite difference discretizations of the diffusion equation

Markus Berndt

Konstantin Lipnikov

David Moulton

Mikhail Shashkov

Los Alamos National Laboratory T-7, MS B284, Los Alamos, NM 87545

berndt@lanl.gov, lipnikov@lanl.gov, moulton@lanl.gov, shashkov@lanl.gov

Contents

- Global support operator method
- Mimetic discretizations
- Convergence analysis
- Numerical experiments
- Conclusions

Model diffusion problem

We consider the elliptic equation

$$-\text{div}(\boldsymbol{K}\,\nabla p) = b \qquad \text{in} \qquad \Omega$$

subject to the homogeneous Dirichlet b.c.

$$p=0$$
 on $\partial\Omega$.

The problem can be reformulated as a system of first order equations:

$$div \mathbf{f} = b,$$

$$\mathbf{f} = -\mathbf{K} \nabla p.$$

For simplicity we assume that K = I.

Support operator method

Consider the mathematical identity:

$$\int_{\Omega} \operatorname{grad} p \, \boldsymbol{f} \, \mathrm{d}x = -\int_{\Omega} \operatorname{div} \boldsymbol{f} \, p \, \mathrm{d}x \qquad \forall \boldsymbol{f} \in H_{div}(\Omega), \ p \in H_0^1(\Omega).$$

Global support-operators (SO) methodology (for div & grad):

- 1. define degrees of freedom for variables p and f;
- 2. equip the discrete spaces for p and f with scalar products $[\cdot, \cdot]_Q$ and $[\cdot, \cdot]_X$, respectively;
- 3. choose a discrete approximation to the divergence operator, the *prime* operator $DIV: X_d \rightarrow Q_d$;
- 4. derive the discrete approximation of the gradient operator, the *derived* operator GRAD: $Q_d \rightarrow X_d$, from the discrete Green formula:

$$[f^d, \operatorname{GRAD} p^d]_X = -[\operatorname{DIV} f^d, p^d]_Q \qquad \forall p^d \in Q_d, \ \forall f^d \in X_d.$$

Support operator method

Consider the mathematical identity:

$$\int_{\Omega} \operatorname{grad} p \, \boldsymbol{f} \, \mathrm{d}x = -\int_{\Omega} \operatorname{div} \boldsymbol{f} \, p \, \mathrm{d}x \qquad \forall \boldsymbol{f} \in H_{div}(\Omega), \ p \in H_0^1(\Omega).$$

Global support-operators (SO) methodology (for div & grad):

- 1. define degrees of freedom for variables p and f;
- 2. equip the discrete spaces for p and f with scalar products $[\cdot, \cdot]_Q$ and $[\cdot, \cdot]_X$, respectively;
- 3. choose a discrete approximation to the divergence operator, the *prime* operator $DIV: X_d \rightarrow Q_d$;
- 4. derive the discrete approximation of the gradient operator, the *derived* operator GRAD: $Q_d \rightarrow X_d$, from the discrete Green formula:

$$[f^d, \operatorname{GRAD} p^d]_X = -[\operatorname{DIV} f^d, p^d]_Q \qquad \forall p^d \in Q_d, \ \forall f^d \in X_d.$$

Step 1 (degrees of freedom for p and f).

- lacksquare p_i^d is defined at a center of cell e_i .
- $f_{i1}^d, \ldots, f_{i4}^d$ are defined at mid-points of cell edges. They approximate the normal components of f, e.g.

$$f_{i1}^d pprox m{f} \cdot m{n}_{i1}.$$

Step 2 (scalar products for p^d and f^d).

Let Q_d be a vector space of discrete intensities with the scalar product

$$[p^d, q^d]_Q = \sum_{i=1}^N |e_i| p_i^d q_i^d \approx \int_{\Omega} p(x) q(x) dx.$$

Let X_d be a vector space of discrete fluxes with a scalar product $[f^d, g^d]_X \approx \int_{\Omega} \boldsymbol{f}(x) \cdot \boldsymbol{g}(x) \, \mathrm{d}x.$

$$[f_{i2}^d, g_i^d]_{X_{e_i}} = rac{1}{2} \sum_{j=1}^4 |T_{ij}| \, m{f}_{ij}^d \cdot m{g}_{ij}^d$$

Then
$$[f^d, g^d]_X = \sum_{i=1}^N [f^d_i, g^d_i]_{X_{e_i}}$$
.

Step 2 (scalar products for p^d and f^d).

Let Q_d be a vector space of discrete intensities with the scalar product

$$[p^d, q^d]_Q = \sum_{i=1}^N |e_i| p_i^d q_i^d \approx \int_{\Omega} p(x) q(x) dx.$$

Let X_d be a vector space of discrete fluxes with a scalar product $[f^d, g^d]_X \approx \int_{\Omega} \boldsymbol{f}(x) \cdot \boldsymbol{g}(x) \, \mathrm{d}x.$

$$[f_i^d, g_i^d]_{X_{e_i}} = \frac{1}{2} \sum_{j=1}^4 |T_{ij}| \, \boldsymbol{f}_{ij}^d \cdot \boldsymbol{g}_{ij}^d$$

Then
$$[f^d, g^d]_X = \sum_{i=1}^N [f^d_i, g^d_i]_{X_{e_i}}$$

Step 2 (scalar products for p^d and f^d).

Let Q_d be a vector space of discrete intensities with the scalar product

$$[p^d, q^d]_Q = \sum_{i=1}^N |e_i| p_i^d q_i^d \approx \int_{\Omega} p(x) q(x) dx.$$

Let X_d be a vector space of discrete fluxes with a scalar product $[f^d, g^d]_X \approx \int_{\Omega} \boldsymbol{f}(x) \cdot \boldsymbol{g}(x) \, \mathrm{d}x.$

$$[f_i^d, g_i^d]_{X_{e_i}} = \frac{1}{2} \sum_{j=1}^4 |T_{ij}| \, \boldsymbol{f}_{ij}^d \cdot \boldsymbol{g}_{ij}^d$$

Then
$$[f^d,\,g^d]_X=\sum_{i=1}^N [f^d_i,\,g^d_i]_{X_{e_i}}$$
.

Step 2 (scalar products for p^d and f^d).

Let Q_d be a vector space of discrete intensities with the scalar product

$$[p^d, q^d]_Q = \sum_{i=1}^N |e_i| p_i^d q_i^d \approx \int_{\Omega} p(x) q(x) dx.$$

Let X_d be a vector space of discrete fluxes with a scalar product $[f^d, g^d]_X \approx \int_{\Omega} \boldsymbol{f}(x) \cdot \boldsymbol{g}(x) \, \mathrm{d}x.$

$$[f_i^d, g_i^d]_{X_{e_i}} = \frac{1}{2} \sum_{j=1}^4 |T_{ij}| \, \boldsymbol{f}_{ij}^d \cdot \boldsymbol{g}_{ij}^d$$

Then
$$[f^d, g^d]_X = \sum_{i=1}^N [f^d_i, g^d_i]_{X_{e_i}}$$
.

Steps 3 & 4 (prime and derived operators).

The prime operator DIV follows from the Gauss theorem:

$$\operatorname{div} \boldsymbol{f} = \lim_{|e| \to 0} \frac{1}{|e|} \oint_{\partial e} \boldsymbol{f} \cdot \boldsymbol{n} \ dl.$$

Center-point quadrature gives

$$\left(\mathbf{DIV}f^{d}\right)_{i} = \frac{1}{|e_{i}|} \left(f_{i1}^{d} |l_{1}| + f_{i2}^{d} |l_{2}| + f_{i3}^{d} |l_{3}| + f_{i4}^{d} |l_{4}| \right)$$

The derived operator GRAD is implicitly given by

$$[f^d, \operatorname{GRAD} p^d]_X = -[\operatorname{DIV} f^d, p^d]_Q \qquad \forall p^d \in Q_d, f^d \in X_d.$$

Short summary.

The stationary diffusion problem

$$-\operatorname{div} \boldsymbol{K} \nabla p = b \quad \text{in } \Omega$$
$$p = 0 \quad \text{on } \partial \Omega$$

is rewritten as the 1st order system

$$f = -K\nabla p$$
, $\operatorname{div} f = b$

and discretized as follows:

$$f^d = -\text{GRAD}\,p^d, \qquad \text{DIV}\,f^d = b^d.$$

By the definition,

$$[f^d, \operatorname{GRAD} p^d]_X = -[\operatorname{DIV} f^d, p^d]_Q.$$

Let $\langle \cdot, \cdot \rangle$ be the usual vector dot product. Then

$$[p^d, q^d]_Q = \langle \mathcal{D}p^d, q^d \rangle, \qquad [f^d, g^d]_X = \langle \mathcal{M}f^d, g^d \rangle.$$

Combining the last two formulas, we get

$$[f^d, \operatorname{GRAD} p^d]_X = \langle \mathcal{M} f^d, \operatorname{GRAD} p^d \rangle$$

= $-[\operatorname{DIV} f^d, p^d]_Q = -\langle f^d, \operatorname{DIV}^t \mathcal{D} p^d \rangle$.

Therefore,

$$GRAD = -\mathcal{M}^{-1}DIV^{t}\mathcal{D}.$$

The derived mimetic discretizations are exact for linear solutions.

Convergence analysis (1/9)

The convergence analysis is based on a connection of the SO method with a mixed finite element (MFE) method:

- the theory of MFE methods justifies the convergence and stability of mimetic discretizations;
- the analysis can not be extended to quadrilateral meshes with non-convex cells and to general polygonal meshes.

Convergence analysis (2/9)

The system of mimetic finite difference equations

$$f^d = -\text{GRAD}\,p^d, \qquad \text{DIV}\,f^d = b^d$$

is equivalent to the following problem: Find $(f^d, p^d) \in X_d \times Q_d$ such that

$$\begin{split} [f^d,\,g^d]_X + [\mathsf{GRAD} p^d,\,g^d]_X &= 0, \\ [\mathsf{DIV}\,f^d,\,q^d]_Q &= [b^d,\,q^d]_Q, \qquad \forall (g^d,\,q^d) \in X_d \times Q_d. \end{split}$$

Recall that by the definition,

$$[f^d, \, \operatorname{GRAD} p^d]_X = -[\operatorname{DIV} f^d, \, p^d]_Q.$$

Convergence analysis (3/9)

Thus, the mimetic discretizations result in

$$\begin{split} [f^d,\,g^d]_X - [\operatorname{DIV} g^d,\,p^d]_Q &= 0, \\ - [\operatorname{DIV} f^d,\,q^d]_Q &= -[b^d,\,q^d]_Q, \qquad \forall (g^d,\,q^d) \in X_d \times Q_d. \end{split}$$

The MFE method with the modified *Raviart-Thomas* finite elements gives

$$(f^h, g^h) - (\operatorname{div} g^h, p^h) = 0,$$

$$-(\operatorname{div} f^h, q^h) = -(b, q^h) \qquad \forall (g^h, q^h) \in X_h \times Q_h.$$

 p^d : at cell centers p^h : one per cell

Degrees of freedom: f^d : normal components f^h : normal components,

Convergence analysis (4/9)

Let $\mathcal{I}: X_d \times Q_d \to X_h \times Q_h$ be the natural isomorphism between the discrete spaces and

$$(g^h, q^h) = \mathcal{I}((g^d, q^d)).$$

Then

$$[\mathbf{DIV}\,g^d,\,p^d]_Q = (\operatorname{div}\,g^h,\,p^h)$$

and

$$[b^d, q^d]_Q = (b, q^h)$$

if b_i^d is the mean value of the source term over the *i*-th mesh cell.

Convergence analysis (5/9)

Thus, the SO problem: Find $(f^d, p^d) \in X_d \times Q_d$ such that

$$\begin{split} [f^d,\,g^d]_X - [\mathrm{DIV}\,g^d,\,p^d]_Q &= 0, \\ -[\mathrm{DIV}\,f^d,\,q^d]_Q &= -[b^d,\,q^d]_Q, \qquad \forall (g^d,\,q^d) \in X_d \times Q_d, \end{split}$$

can be rewritten as a FE problem: Find $(f^h, p^h) \in X_h \times Q_h$ such that

$$(f^h, g^h)_h - (\operatorname{div} g^h, p^h) = 0,$$

$$-(\operatorname{div} f^h, q^h) = -(b, q^h) \quad \forall (g^h, q^h) \in X_h \times Q_h,$$

where

$$(f^h, g^h)_h \equiv [f^d, g^d]_X.$$

Convergence analysis (6/9)

The FE problem has a unique solution if the following conditions hold:

continuity:

$$(g^h, g^h)_h \le c_2(g^h, g^h) \qquad \forall g^h \in X_h;$$

ellipticity:

$$c_1(g^h, g^h) \le (g^h, g^h)_h \qquad \forall g^h \in X_h, \quad \operatorname{div} g^h = 0;$$

stability (LBB condition):

$$\sup_{q^h \in X_h} \frac{(\operatorname{div} g^h, q^h)}{\|g^h\|_{\operatorname{div}}} \ge c_3 \|q^h\| \qquad \forall q^h \in Q_h.$$

The constants c_1 , c_2 and c_3 are independent of h.

Convergence analysis (7/9)

Theorem (Strang). Suppose \mathcal{T}_h is a shape regular triangulation of Ω and input data are sufficiently smooth. Then

$$\|\boldsymbol{f} - f^h\|_{\text{div}} \le c \left\{ \inf_{g^h \in X_h} \left[\|\boldsymbol{f} - g^h\|_{\text{div}} + \Delta(g^h) \right] \right\}$$

and

$$||p - p^h|| \le c \left\{ \inf_{q^h \in Q_h} ||p - q^h|| + \inf_{g^h \in X_h} \left[||f - g^h|| + \Delta(g^h) \right] \right\}$$

where

$$\Delta(g^h) = \sup_{w^h \in X_h} \frac{|(g^h, w^h) - (g^h, w^h)_h|}{||w^h||_{\text{div}}}$$

is the consistency term and c is a positive constant independent of h.

Convergence analysis (8/9)

Lemma. Suppose \mathcal{T}_h is a shape regular quasi-uniform quadrilateral partition of Ω . Then

$$|(g^h, w^h) - (g^h, w^h)_h| \le ch ||g^h||_1 ||w^h||_{\text{div}},$$

where c is a positive constant independent of h.

Thus, the consistency term is small, i.e.

$$\Delta(g^h) \le c \, h \|g^h\|_1.$$

Remark: For many problems this estimate is very rough.

Convergence analysis (9/9)

The approximation theory and above lemma result in optimal convergence estimates.

Theorem. Suppose \mathcal{T}_h is a shape regular quasi-uniform quadrilateral partition of Ω and input data are sufficiently smooth. If $(f^h, p^h) = \mathcal{I}((f^d, p^d))$, then

$$\|f - f^h\| \le ch \|f\|_1,$$

 $\|f - f^h\|_{\text{div}} \le ch \{\|f\|_1 + \|\text{div } f\|_1\},$
 $\|p - p^h\| \le ch \{\|p\|_1 + \|f\|_1\}$

where c is a positive constant independent of h.

Numerical experiments (1/4)

(Raviart-Thomas elements for a quadrilateral).

$$\Phi_e(\xi,\eta) = x_1(1-\xi)(1-\eta) + x_2\xi(1-\eta) + x_3\xi\eta + x_4(1-\xi)\eta.$$

The Raviart-Thomas finite elements on \hat{e} are

$$\hat{f}_1 = \left[egin{array}{c} 0 \\ \eta - 1 \end{array}
ight], \quad \hat{f}_2 = \left[egin{array}{c} \xi \\ 0 \end{array}
ight], \quad \hat{f}_3 = \left[egin{array}{c} 0 \\ \eta \end{array}
ight], \quad \hat{f}_4 = \left[egin{array}{c} \xi - 1 \\ 0 \end{array}
ight].$$

The Piola transformation is defined by

$$f_{e,i}^h = \frac{|l_i|}{J_e} D\Phi_e \, \hat{f}_i, \qquad i = 1, 2, 3, 4.$$

Numerical experiments (2/4)

Let the exact solution be

$$p(x,y) = (|x - 0.5|^{\alpha} - 0.5^{\alpha})(|y - 0.5|^{\alpha} - 0.5^{\alpha}), \qquad 0 \le x, y \le 1,$$

where $\alpha = 2.6$. It is easy to check that

$$\operatorname{div} \boldsymbol{f} = \Delta p \in H^1(\Omega)$$
 and $\boldsymbol{f} \in (H^1(\Omega))^2$.

Denote the errors we compute in our experiments by

$$\varepsilon_p = ||p - p^h||$$
 and $\varepsilon_f = ||f - f^h||_{\text{div}}$.

Numerical experiments (3/4)

h^{-1}	modified RT FE		SO FD	
	$arepsilon_p$	$arepsilon oldsymbol{f}$	$arepsilon_p$	$arepsilon oldsymbol{f}$
16	1.58e-3	2.34e-2	1.61e-3	2.35e-2
32	7.95e-4	1.22e-2	7.99e-4	1.22e-2
64	3.98e-4	6.29e-3	3.99e-4	6.29e-3
128	1.99e-4	3.22e-3	1.99e-4	3.22e-3
256	9.97e-5	1.64e-3	9.97e-5	1.64e-3
512	4.98e-5	8.32e-4	4.98e-5	8.32e-4
	$arepsilon_p$	$arepsilon oldsymbol{f}$	$arepsilon_p$	$arepsilon oldsymbol{f}$
16	1.42e-3	2.24e-2	1.43e-3	2.25e-2
32	7.15e-4	1.17e-2	7.18e-4	1.17e-2
64	3.59e-4	5.96e-3	3.59e-4	5.98e-3
128	1.80e-4	3.06e-3	1.80e-4	3.07e-3
256	9.00e-5	1.56e-3	9.00e-5	1.56e-3
512	4.50e-5	7.93e-4	4.50e-5	7.93e-4

Numerical experiments (4/4)

Accuracy of the mimetic discretizations versus the problem size.

Conclusion

- the convergence rate of mimetic discretizations for the linear diffusion equation is optimal on both smooth and non-smooth meshes;
- asymptotically, the SO and FE methods result in the same discretization errors; however, the FE method requires a very accurate quadrature rule for integrating RT finite elements; the methods are identical if $[f^d, g^d]_X = (f^h, g^h)$.
- similar methodology can be used to obtaing superconvergence estimates;
- application of our methodology is limited to triangular and quadrilateral meshes.

